
CANCANCANCANopen - Basics

© CANopen is a registered trade mark of the CAN in Automation e.V.

Introducing the industry standard

CANopenopenopenopen

CANopen Basics 2 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

1. Introduction to CAN

CAN is short for ‚Controller Area Network’ and was originally developed by the companies Bosch and Intel as a bus system for
vehicles. In the meantime, CAN is a very popular field bus for the scope area of industrial automation.

The CAN bus is a serial bus system. CAN uses a bus structure with a differential pair of bus lines for data and an optional CAN-
Ground. The bus lines must be terminated with 120 Ohms at both ends. This bus structure is standardized in ISO11898-2.

All devices, also called bus nodes, are connected in parallel, so each data telegram, that was sent to the bus, is received by all
devices.

CAN bus ISO 11898-2 network structure

120 Ohm 120 OhmCAN-Bus

CAN CAN CAN CAN

Device 1 Device 2 Device .. Device n

optional CAN-Ground

CANopen Basics 3 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

1.1 CAN frames

The telegrams for data transmission are also named CAN frames. The number of bits of a telegram depends on the size of the data
field. The CANopen protocol only modifies the arbitration field, that holds the CAN identifier, and the data field. All other bits of a CAN
frame are modified by the hardware of a CAN module.

CAN-telegram

Frame

Data field CRC field ACK field End field

Arbitration
field

Control
field

1 2 Bit12/32 16 Bit6 7 Bit0 - 8 Byte (0 - 64 Bit)Nr of bits

Figure 1: CAN-telegram (bit-stream)

In the ISO11898 standard, two telegram formats are defined. There is the standard format with a 11 bit identifier (used in CANopen
networks) and the extended format with a 29-bit identifier (for example used in J1939). The architecture of the telegram allows the
use of both types in one network.

There are two levels defined on the bus line:
Recessive bus level : is generated from the CAN bus transceiver, for transmitting bit value 1.
Dominant bus level : is generated from the CAN bus transceiver, for transmitting bit value 0.
If a dominant and a recessive bit level is sent from different nodes at the same time, the dominant level overwrites the recessive level.

CANopen Basics 4 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

1.1.1 CAN identifier and control field

standard format (11-bit identifier)

status field control field SOF: start bit
11Bit ID: message-index
RTR: remote transmission request
IDE: Iientifier extension bit
r0: reserved
DLC: data length code (4Bit) 0 .. 8 byte

Figure 2: CAN-telegram in standard format 11-bit ID

For telegrams using 11 bit identifiers, the minimum telegram length is 44 bit at 0 data byte information

extended format (29-bit Identifier)

status field control field

18Bit ID: ID-extension
RTR: remote transmission request
r1, r0: reserved
DLC: data length code (4Bit) 0 .. 8 byte

SOF: start bit
11Bit ID: message identifier (node-ID)
SSR: substitute remote request
IDE: identifier extension bit

Figure 3: CAN-telegram in standard format 29-bit ID

For telegrams using 29 bit identifiers, the minimum telegram length is 62 bit at 0 data byte information

CANopen Basics 5 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

1.2 Arbitration in CAN networks

The CAN bus is a network with multimaster functionality. All devices have same rights. The CAN bus protocol allows simultaneous
bus access from different nodes. If more than one node is accessing the bus at the same time, a non-destructive, bit-wise arbitration
method is used, to grant the bus to the device that transmits the message with highest priority.

When the bus is in Idle state, several nodes may start transmission of a frame. Every node reads back the bit stream, from the bus
during complete message transmission and compares the transmitted bit value with the received bit value. Per definition the bits with
dominant values overwrite those with recessive values. If a transmitter wants to transmit a recessive bit to the bus line, but reads
back a dominant bus level, the transmitter will immediately stop sending its own frame, so transmission of the frame with the first
dominant bit position will be completed.

Note:

This arbitration method some preconditions must be guaranteed:

1) Arbitration must be done within the arbitration field:
Any CAN identifier must be sent only from one node.
It is forbidden for the devices to use same CAN identifiers for transmitting data frames.
The same identifier however may be received by multiple nodes.

2) The prioritization is always processed within a single bit. Bus line extension must be limited in that way, that transmission
and reading back of a bit over the complete the network must be possible within the time of 1 bit time (accurate ¾).
This is a limitation of bus length and CAN baud rates.

CANopen Basics 6 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

1.3 Bus length

The following bus length table approximately result from the requirements of the arbitration method.

Bit rate bus length nominal bit time

1 Mbit/sec 30 m 1 usec

800 kBit/sec 50 m 1,25 usec

500 kBit/sec 100 m 2 usec

250 kBit/sec 250 m 4 usec

125 kBit/sec 500 m 8 usec

50 kBit/sec 1000 m 20 usec

20 kBit/sec 2500 m 50 usec

10 kBit/sec 5000 m 100 usec

The shown bus lengths are approximations for use of ISO11898 compliant drivers, standard bus conductors without regard of opto
couplers.

CANopen Basics 7 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2 CANopen

CANopen is the open protocol standard for CAN in the field of automation technology and has been standardized by the association
„CAN in Automation“ (CiA). CANopen normally uses a master slave concept. Each CANopen device (also called node) has a unique
node ID, that is used to identify a node and to generate CAN identifiers for various messages.

CANopen defines various communication protocols for data exchange and also device profiles in order to specify the functional
behavior for various application types such as I/O modules, drives, encoders, sensors etc. The complete process data and parameter
set is held within an object dictionary, that is also defined in the device profiles.

CANopen Device Model

Communication Interface
defines
Protocol Types
PDO
SDO
NMT
Special Function
Sync
EMCY

Draft Standard : DS301

Object Dictionary
defines
Data Base for
Data Types
Application
 Data + Parameters
Communication
 Parameters

DS4xxDraft Standard :

Process Interface
Application

Device Profile
Implementation

I/O Interface ..

DS4xxDraft Standard :

C
A

N
 n

e
tw

o
rk

H
a

rd
w

a
re

 I
/O

A CANopen device can be divided into three parts:
1) The communication interface and protocol stack enables access to the object dictionary of the device.
2) The object dictionary is working as data base and holds all process and configuration data of the device.
 The object dictionary is working as an interface from CAN bus line to application
3) The process interface and application program is running the application itself and processes the hardware interface.

CANopen Basics 8 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.1 Draft Standards and Device Profiles

CANopen defines the application layer (OSI-layer 7) as a communication profile, which was standardised by the CiA in the Draft
Standards DS30x for all applications. The Draft Standard DS301 describes all object dictionary entries for the communication layer.
This standard is unique for all devices.

The Draft Standards DS4xx specify the generic and specific device profiles with the functional behaviour of a logical device.
Application profiles describe a set of virtual device interfaces. The functionality and process image is represented within the object
dictionary. The object dictionary is a data set holding all process data elements and parameters.

Draft Standard (CiA) for the device types

DS 301 Communication profile

DS 401 Device profile for digital and analog I/O, joystick applications, etc

DS 402 Device profile for drives

DS 404 Device profile for sensors / regulators

DS 405 Device profile for programmable devices such as PLC systems

DS 406 Device profile for encoders

DS … (further device types)

Example of device profiles

CANopen Basics 9 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.2 Object directory

The object directory is the data set of all process data, variables and parameters (called objects) of a CANopen device. The data
shows the process image (for example state of digital input channels) and with the parameters the functional behavior of a CANopen
device can be influenced (for example inverting the digital input channels).

The object dictionary is the interface from communication layer to the application layer of a CANopen device. For example the
application layer reads the digital input bitmap from hardware pins to the object dictionary and the communication layer transmits
these information to the CAN bus line using a PDO (Process Data Object).

All objects are addressed using an index and for complex data types such as arrays and records (structures) a sub index.

object index (hex) object

0000 not used

0001 - 001F static data types

0020 - 003F complex data types

0040 - 005F manufacturer specific complex data types

0060 - 007F device profile specific static data types

0080 - 009F device profile specific complex data types

00A0 - 0FFF reserved for further use

1000 - 1FFF communication profile area

2000 - 5FFF manufacturer specific profile area

6000 - 9FFF standardized device profile area

A000 - FFFF reserved for further use

Structure of a CANopen object directory

CANopen Basics 10 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

Example for an object directory:

Part of object dictionary for CANopen chip CO4011. The CO4011 is a standard I/O module, it uses the draft standard DS401, that
defines the structure of the object dictionary.

index sub-
index

Name Functionality Access PDO-
mapping

0005 - dummy 8 ro Yes

0006 - dummy 16 ro Yes

100C - guard time rw -

100D - life time factor

These two objects are used to configure the node- and life-
guarding functionality of the device rw -

100E - COB-ID guard rw -

1014 - COB ID emergency rw -

1015 - inhibit time emergency rw -

1017 - producer heartbeat time rw -

1018 identity object

 0 (no. of subentries) ro -

 1 vendor ID ro -

 2 product code ro -

 3 revision number ro -

2000 - device manufacturer ro -

2101 - system configuration ro -

6000 0 to n read digital input 8-bit This object holds the bitmap of the hardware input pins ro Yes

6002 0 to n polarity input 8-bit With this object, an optional input pin inverter may be activated rw -

6005 global interrupt enable rw -

6006 0 to n Interrupt mask: any change rw -

6007 0 to n Interrupt mask rising edge rw -

6200 0 to n Digital output This object is written from CAN bus line in order to set the digital
output pins of a CANopen device.

CANopen Basics 11 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.3 CANopen communication

The CANopen protocol standard defines several CAN message types for data exchange, network management and reporting device
errors. All message types for data exchange are accessing the object dictionary of a CANopen device.

Message Type Description Default
CAN-Identifiers

NMT Network Management Telegram
These telegrams are sent from the master to the slave nodes in order to control the
network state of the slaves.
- Highest priority CAN identifier
- Broadcast message from master to all slaves
Possible states of a CANopen device: stopped, preoperational, operational.

0x00

SDO Service Data Object
These telegram type is used to exchange configuration data.
- used in device states preoperational and operational
- Lower priority CAN identifier
- Mainly used during bus start up.
- Each telegram is initiated from master node.
- Each telegram is answered, so transfer is slowly.
- There is only one object (data from object dictionary) that can be exchanged
- Data is addressed using index and sub index.

0x600 + Node-ID
0x580 + Node-ID

PDO Process Data Object
These telegram type is used to transfer process data (for example digital input bitmap)
- High priority CAN identifier
- PDOs may only be transmitted in operational device state.
- Predefined data content of max. 8 bytes. No addressing using index and sub index.
- Data transfer may be initiated from each node.
- Data transfer is not answered

0x180 + Node-ID
…
0x480 + Node-ID
0x200 + Node-ID
…
0x500 + Node-ID

CANopen Basics 12 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

Message Type Description Default
CAN-Identifiers

EMCY Emergency Message
These telegrams are sent in order to indicate an error condition of the device.
- High priority CAN identifier

0x80 + Node-ID

SYNC Synchronization Message
This telegram is sent from master to all slaves, in order to synchronize exchanging of
process data with hardware and in order to cause transmission of PDOs
- High priority CAN identifier
- Message without any data content

0x80

Boot-Up Boot Up Message
This telegram type is used to indicate, that a node has performed a reset and is no ready
to take part within the network communication.
- Low priority CAN identifier
- Sent only once after node has performed reset procedure.

0x700 + Node-ID

Error-Control Error-Control Protocol
These telegram types are used to monitor the device state. The protocols are used to
detect breakdowns of slaves or the master in order to enter fail safe condition states.
There are two types of Error-Control Protocols:
- Node-Guarding / Life Guarding
 The master polls each slave individually. The slave sends an answer protocol if still
 alive.
- Heartbeat
 Each node periodically transmits its NMT state.

0x700 + Node-ID

CANopen Basics 13 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.4 Default Identifier Allocation

A default identifier allocation saves configuration effort. Thereby the CAN identifier is based on the devices node number.

The default identifier allocation is defined in CAN open as followed:

Identifier 11-bit
(binary)

Identifier
(decimal)

Identifier
(hex)

Telegram Type / Function

00000000000 0 0 NMT : Network Management Telegram

00010000000 128 80h SYNC : Synchronization Message

0001xxxxxxxx 129 - 255 81h - FFh EMCY : Emergency

0011xxxxxxxx 385 - 511 181h - 1FFh PDO1 (tx)

0100xxxxxxxx 513 - 639 201h - 27Fh PDO1 (rx)

0101xxxxxxxx 641 - 767 281h - 2FFh PDO2 (tx)

0110xxxxxxxx 769 - 895 301h - 37Fh PDO2 (rx)

0111xxxxxxxx 897 - 1023 381h - 3FFh PDO3 (tx)

1000xxxxxxxx 1025 - 1151 401h - 47Fh PDO3 (rx)

1001xxxxxxxx 1153 - 1279 481h - 4FFh PDO4 (tx)

1010xxxxxxxx 1281 - 1407 501h - 57Fh PDO4 (rx)

1011xxxxxxxx 1409 - 1535 581h - 5FFh SDO send

1100xxxxxxxx 1537 - 1663 601h - 67Fh SDO receive

1110xxxxxxxx 1793 - 1919 701h - 77Fh Boot Up and Error Control Protocol

xxxxxxxx = node number 1 - 127

CANopen Basics 14 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.5 SDO : Service Data Object

A SDO is an access of exactly one object of the object dictionary using the objects index and sub index as an address (also named
multiplexer). It always uses 8 data bytes of the CAN message. SDOs are always initiated from the CANopen bus master, and are
answered from the slave node.
The principle structure of SDOs shows the usage of the CAN telegram data bytes.

Service Data Objekt SDO

Object dictionary

Initiate

Command

Byte 0 Byte 1-3: Multiplexer

A SDOs offers the access
to the object dictionary

Byte 4-7: Data

Domain
Protocol

16 bit Index 8 bit
Subindex

1- 4 byte bit parameter data

...

Chance Polarity

...

Revision Number

Product Code

Vendor ID

Identity Object

...

Device Type

...

00H

...

03H

02H

01H

00H

...

00H

...

value (parameter)

...

00H ... FFFFFFFFH

value (parameter)

03H

...

70191H

...

6002H

...

1018H

...

1000H

discriptionSubindex value (parameter)16 bit Index- Upload
- Download
- Data Length
- Expedited Transfer
- Segmented Transfer

- Abort
- Toggle Bit

CANopen Basics 15 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

SDO Download Protocol

SLAVE
(Server)

Response

Indication

Byte 0 Byte 1+2 Byte 3 Byte 4-7

(Download
Response)

No data (Reserved)16 b it

Index

8 b it

Sub index

Byte 0 Byte 1+2 Byte 3 Byte 4-7

(Download
request)

16 bit

Index

8 b it

Subindex

Param eter data

MASTER
(Client)

Request

Confim

Response with the same index and sub index

Write data from master to slave object dictionary

SDO Upload Protocol

SLAVE
(Server)

Response

Indication

Byte 0 Byte 1+2 Byte 3 Byte 4-7

(Upload
Response)

16 b it

Index

8 b it

Sub index

Byte 0 Byte 1+2 Byte 3 Byte 4-7

(Upload
request)

16 bit

Index

8 b it

Subindex

Param eter data

MASTER
(Client)

Request

Confim

Response with the same index and sub index

No data (Reserved)

Read data from slave object dictionary to the master

CANopen Basics 16 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.6 The process data object PDO

The process data exchange via CANopen is done with standard CAN messages without protocol overhead.

For each PDO, there is a configuration object in order to specify the transmission mode of a PDO and additionally there is a mapping
object, that predefines the data content of a PDO. Up to 8 byte of data can be transmitted within a PDO message.

Transmission of a PDO may be initiated in several transmission modes:
- asynchronous PDO transmission is initiated on an event. (For example change of mapped data)
- synchronous PDO transmission is initiated by the SYNC message
- periodically PDO transmission is initiated from an event timer, that triggers transmission periodically
- polling PDO transmission is initiated, if the node has received a remote frame with same CAN identifier.

2.6.1 PDO Communication Parameters

For each PDO there is a setting object, that defines the communication parameters just like CAN identifier and the transmission mode
for the related PDO. The communication parameter objects are using data type record.

Object
Index

Sub
Inde
x

PDO Parameter Description

14xx RPDO Communication Parameters for Receive-PDO xx

18xx TPDO Communication Parameters for Transmit-PDO xx

14xx/18xx 00 Nr of Sub Number of valid sub index for this object

 01 COB-ID CAN message identifier, that is used for this PDO

 02 Transmission Type Transmission Type for the PDO.

 03 Inhibit Time Minimum time interval from one PDO transmission to the next

 04 - Implemented because of compatibility reasons without any
function

 05 Event Time Time interval to trigger PDO transmission periodically

CANopen Basics 17 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.6.2 PDO Mapping Parameters

With the PDO mapping the data content of a PDO is preconfigured within a mapping table. This mapping table holds the index, sub
index and data size of each object, that is transmitted within the PDO message.

The mapping table for each PDO is represented as an object within the devices object dictionary. The mapping table is realized as an
array of mapped objects.

Object
Index

Sub
Inde
x

PDO Parameter Description

16xx RPDO Mapping Parameters for Receive-PDO xx

1Axx TPDO Mapping Parameters for Transmit-PDO xx

16xx/1Axx 00 Nr of Sub Shows the number of mapped objects within one PDO message

 01
..
n

 Mapping Entry Shows index, sub index and data size given in bits, of a mapped
object, that is transferred within the PDO message

CANopen Basics 18 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

Servicedatenobjekt SDO

Objektverzeichnis (Auszug)

(Application
Objekt B)

(Application
Objekt C)

(Application
Objekt A)

empty or
not valid

PDO Mapping Example

(1) 8 Bit (2) 16 Bit (3) 8 Bit

Mapping Object 2 : Tab le for PDO2

0

1 8

2 16

yyyyh yyh

zzzzh zzh

xxxxh xxh3 8

3 (3 mapped objects)

Object Dictionary

(Mapping Object x)

(Application Object A)

(Application Object B)

(Application Object C)

(Mapping Object 1)

(Mapping Object 2)

Index Sub

... ...

... ...

... ...

xxxxh xxh

yyyyh yyh

zzzzh zzh

nnnnh nnh

ooooh ooh

max 8 bytes data

PDO2 : CAN message

CANopen Basics 19 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.7 NMT : Network Management

For controlling the network status of all slave nodes, the CANopen master uses several NMT messages. The NMT messages are
highest priority messages with CAN identifier 0 and are always using two data bytes.

 Identifier Data Byte 0 Data Byte 1

NMT telegram 0x000 NMT command Slave Node Id

The first data byte holds the NMT command that switches the Network State, and the second data byte holds the Node-ID of the
CANopen slaves, that are addressed. If the Slave Node ID is 0, the NMT has to be processed by all connected slave nodes.

NMT
Command
Byte-Value

Command

Description

0x01 Operational Switches to Operational state enables PDO transfer.
Typically the operational state with PDO transfer is the network state for running
systems after the master has finished initialization of all slaves.

0x02 Stop Node In status stopped, no PDO and no SDO communication is allowed.

0x80 PreOperational Switches to Operational state.
In Preoperational state no PDO, but only SDO transfer is allowed.
After device start up, a CANopen node switches to PreOperational state automatically.
This is the typical network state during initialization procedure.

0x81 Reset Node Performs a complete reset of the CANopen device

0x82 Reset Communication Resets all objects from object dictionary that hold communication relevant parameters
to default values

CANopen Basics 20 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.8 EMCY : Emergency Message

With emergency messages, a CANopen device reports any change of an error condition to the bus. An emergency message is
always 8 data bytes long.

Identifier Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3 Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

0x80 + Node-ID EMCY Code ErrReg Manufacturer specific error code

EMCY Code Emergency error code. Codes are defined in Draft Standard DS301.
ErrReg Error Register. The error register is implemented as object 1001 within the devices object dictionary.
 This object is also inserted into emergency messages.

A CANopen device transmits an emergency message, if setting or resetting of any error condition is detected.

2.9 SYNC : Synchronization Telegram

The SYNC message is sent as a broadcast message from the CANopen master to all slaves. It is used to enable synchronous data
exchange from object dictionary to application and vice versa. For example reading of digital input pins might be triggered for all
CANopen devices at the same time, using a SYNC message. The SYNC message normally uses CAN identifier 0x00 an no data
bytes. The SYNC telegram works only on the PDOs of a slave device, that are configured for synchronous transmission within the
PDO communication parameter objects.

Identifier

0x80

CANopen Basics 21 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.10 Error Control Protocols and Boot-Up Message

Error control protocols are implemented, in order to enable monitoring of the state of nodes. These protocols are important to switch
to uncritical system states in case of crashes of single nodes or bus lines. For example, a drive should stop motion in case of a PLC
crash.

The Error Control Protocols uses a CAN telegram with CAN identifier 0x700 + Node-Id and one data byte, that reports the NMT state
of the node.

Identifier Data Byte 0

0x700 + Node-ID NMT-State

The NMT State is reported as follows:

0x00 Boot-Up Message
0x05 Operational
0x7F Preoperational

There are three types of error control protocol.

2.10.1 Boot Up Message

As mentioned above, the boot up message is a special version of error control protocol with NMT state 0x00. This message is sent
for exactly one time after a node is started or has performed a reset sequence in order to indicate the start up to all nodes of the
CANopen network.

CANopen Basics 22 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.10.2 Node Guarding

When in Node-Guarding mode, the bus master is polling the CANopen device using a remote frame. The slave responds with the
error control protocol, but adding a toggle bit (most significant bit) to the NMT state, that is reported in the data byte. The toggle bit is
toggled after each successful transmission of the error control protocol.

With node guarding, network monitoring is possible for both directions.

The slaves waits for an incoming polling message that must be sent from CANopen master. If the slave does not receive the polling
message, it switches the application to a fail safe state. For example a drive will perform an emergency stop, an I/O node will switch
of all digital output pins.

For configuration of the Node Guarding protocol, each CANopen device has two objects implemented within the object dictionary.
These objects must be initialized from a master node during network start up procedure, in order to activate the node guarding
features.

Object
Index

Name

Description

0x100C Guard Time Time period for polling the slave node.

0x100D Life Time Factor Multiplication factor for the Guard Time.
Life Time = Guard Time * Life Time Factor
If a slave receives no polling telegram within the life time (product of Guard Time and
Life Time Factor), the node enters the fail safe state.

CANopen Basics 23 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

2.10.3 Heart Beat

If Heart Beat protocol is used, the node transmits its error control message cyclically to the bus. There is no polling etc. With the
Heart Beat protocol, only the receiver can monitor the Heart Beat producing node.

For configuration of the Heart Beat protocol, each CANopen device has one object implemented within the object dictionary for each
direction. These objects must be initialized from a master node during network start up procedure, in order to activate sending or
monitoring of the Heart Beat messages.

Object
Index

Name

Description

0x1016 Consumer Heart Beat Time Configures the CAN identifier and time period for monitoring incoming heart
beat messages.

0x1017 Producer Heart Beat Time Configures the time period for transmitting heart beat messages.

Please Note:

For one CANopen node, only one type of error control either Node Guarding or Heart Beat is allowed at the same time.

2.11 EDS File

For the user of a CANopen device, the object directory is saved as EDS-file (electronic data sheet). The EDS file shows the complete
device information. All objects are saved with index, sub index, name, data type, default value, minimum, maximum and access rights
(read/write, transfer only via SDO or even via PDO etc.). Thereby, using the EDS-file, the whole functionality of a CANopen device is
described.

For building a CANopen network, normally the EDS files for all nodes are read into a network configuration tool.

CANopen Basics 24 / 24

frenzel + berg electronic GmbH & Co.KG - Turmgasse 4 - 89073 Ulm - Germany - +49(731)97057-0 - www.frenzel-berg.de

3 Example of a simple CANopen Network Start Up

For this example we use a CANopen master with node ID 1 and a simple digital I/O module as a slave node with node ID 3
All values are given in hex. <> brackets are used to indicate a value as CAN message identifier

Messages from Master Messages from Slave Description

…

 <703> 00 Boot Up message from slave node

<603> 40 00 10 00 00 00 00 00 SDO request from Master in order to read object 1000

 <583> 42 00 10 00 91 01 03 00 SDO answer from Slave with data content of object 1000

<603> 22 17 10 00 F4 01 00 00 SDO Master writes 0x1F4 (500dec) to object 1017
This activates the Heart Beat protocol

 <583> 60 17 10 00 00 00 00 00 SDO write acknowledge from slave

 <703> 7F Heart Beat message from slave
indicating NMT state PREOPERATIONAL

<000> 01 03 NMT : start node message from master switches slave with
Node ID 3 to OPERATIONAL state

 <183> 00 00 TPDO1 from slave with digital input bitmap

 <703> 05 Heart Beat message from slave
indicating NMT state OPERATIONAL

 <183> 02 81 TPDO1 from slave with digital input bitmap, 3 input pins are
scanned high

<203> 00 01 RPDO1 transmitted from master to slave in order to set one
digital output

